Detection of Masses in Digital Mammograms using K-means and Support Vector Machine
نویسندگان
چکیده
Breast cancer is a serious public health problem in several countries. Computer Aided Detection/Diagnosis systems (CAD/CADx) have been used with relative success aiding health care professionals. The goal of such systems is contribute on the specialist task aiding in the detection of different types of cancer at an early stage. This work presents a methodology for masses detection on digitized mammograms using the K-means algorithm for image segmentation and co-occurrence matrix to describe the texture of segmented structures. Classification of these structures is accomplished through Support Vector Machines, which separate them in two groups, using shape and texture descriptors: masses and non-masses. The methodology obtained 85% of accuracy.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملComputer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four typ...
متن کاملClassification of Normal and Abnormal Mammograms Based on Discrete Wavelet Transform and Support Vector Machine
Nowadays computer aided design / diagnosis plays a vital role in detection of breast cancer. This paper deals with an intelligent diagnosis system based on wavelet analysis and principle component analysis. Support vector machine classifi er is used to classify mammograms as either normal or abnormal. Abnormal mammograms are those which include mammograms containing masses and microcalcifi cati...
متن کامل